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Abstract. An appropriate path differential measure is employed for obtaining the path 
integral representation of the propagator of a particle with a time dependent ‘mass’. The 
evaluations are restricted to quadratic lagrangians and the propagator for the damped har- 
monic oscillator is given explicitly. 

On many occasions a constrained particle is dissipating energy to a surrounding many- 
particle system with which it is coupled. Although a proper quantum-dynamical 
treatment of such a particle would involve the dynamics of the particle plus the sur- 
rounding system an immense simplification of the problem can be attained by the 
construction of a single-particle lagrangian, which takes account of the energy absorbing 
process in an effective manner. 

In general such (dissipative) lagrangians manifest the particle loss of energy to the 
environment in the form of a time prescribed coefficient of the velocity and an explicitly 
time-dependent potential energy. We shall use the term ‘mass’ for twice the coefficient 
of the velocity in these lagrangians. 

They look like: 

L [ x ,  t]  = )& ( t )X2  - U(x ,  t). (1) 

As is well known the propagator of the corresponding Schrodinger equation, 

contains all the necessary quantum-dynamical information. 
The propagator is formally obtained by making use of a conditional path integral 

of an appropriate path differential measure, which takes account of the ‘mass’ time 
dependence. We have : 

(3) 1 xO)=x 

x ( O ) = i  
K(xt (x’0)  = f e i p (  J^d [$A(T)~~(T)- U(x(r),  T ) ]  d.r 9 [ x ]  

where the path differential measure is given by : 

We shall exemplify the above by evaluating the propagator in two cases of interest, 
but to facilitate this we shall more or less state certain results relating to quadratic 
lagrangians. 
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From Feynman and Hibbs (1965) we know that the propagator for a quadratic 
lagrangian can be written exactly as : 

K(xtlx’0)  = K(Ot100) exp -S(xtlx’O) 1 ( 5 )  

where S(xtlx’0) is the classical action of our particle along the path starting from x’ at zero 
time and reaching x at time t .  

K(Ot100) is the propagator for a cyclic return to the origin in time t .  It is completely 
time dependent. 

We now wish to point out how to evaluate the propagator K(Ot100) in the case of 
quadratic lagrangians. 

By a procedure analogous to  the one appearing in Papadopoulos (1968) it is shown 
that: 

where D(t) is a matrix (3 x 3 in this case) function which obeys a certain second-order 
differential equation, relating to the lagrangian of the problem, and satisfies the initial 
conditions : 

D(0) = 0, D(0) = I (7) 

(4 = 3 x 3 unit matrix). 
In the case of a lagrangian 

L = ) d ~ ( t ) . i 2 - & ( t ) x 2 + f ( t ) .  x (8) 

the equation for the matrix D(t) becomes: 

d -(A( t )  D( t ) )  + i.*(t) D( t )  = 0. 
dt  (9) 

By now we have all we need for the evaluation of the propagator of the damped harmonic 
oscillator. 

Consider the lagrangian (Havas 1957) 

Lo = exp - -(x2 -Q2x2). 
(t$ 

Upon application of the Euler-Lagrange equations to (10) we obtain the equation 

m 
t 0  

mi+-x+mQZx  = 0, 

which is the classical equation of motion for the damped harmonic oscillator. Comparing 
(8) and (10) we obtain from (9) the following equation for D in the case of the damped 
oscillator: 

1 D+-D+Q2D = 0. 
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D(t) satisfying the initial conditions (7) is obtained as : 

R’= Q 2 -  - [ (2: ,1  
sin R’t 

R‘ D(t) = ~ 

To complete the evaluation we then require the classical action for the damped 
oscillator which can be obtained from the classical path X(r) (with X(0) = x‘, X( t )  = x) 
which satisfies the equation of motion (1 1). 

For this action we use 

So(xtIx’0) = j-; exp ( - ;o); -(*2(t)-R2X2(r)) ds. 

The final result for the damped harmonic oscillator obtained upon combination of 
(5), (6), (13) and (14) is given by: 

This result can also be verified by use of the Van Vleck-Pauli formula (Jones and 
Papadopoulos 1971). 

The quantum mechanics of the damped harmonic oscillator was also studied by 
Bopp (1962) using a coordinate and a wavefunction transformation leading to a 
Schrodinger equation for the ordinary oscillator but with complex eigenvalues and 
essentially ‘time-dependent’ eigenfunctions. It is then possible for one to obtain ex- 
pression (1 5) by transforming the propagator associated with the complex eigenvalues. 
However, the path integral method is direct and of more far reaching applicability. 

We illustrate this by considering a new model-dissipative lagrangian for a particle 
in an external field 

L ,  = -  1+- x 2 + f ( t ) . x  I :ol 
It can be easily verified that the relaxation pattern of the velocity goes like (1 + t / to) -  
in contrast to the faster exponential decay of the previous case. 

(16) we finally obtain the propagator associated with this lagrangian : 
Combining (5), (6), (7) and (9) utilizing the appropriate quantities from the lagrangian 

m i 
2niht0 In( 1 + [ / t o )  ) 3 ’ 2  ex’( h l n ( l + t / t o ) { ~ ( x - x ~ ) 2  

+ ~ ~ d r [ I n ( ~ ~ x ’ + l n (  l+;)x] . f ( ~ )  

+3J: m ds l i d s ’  In(%) ln( 1 +E)/(.) . f ( s ’ ) ] ) .  

K ,(xt(x’O) = 

Evidently the lagrangian formulation of quantum mechanics in the case of constrained 
systems prevails over the usual eigenfunction method, which in general is not easily 
accessible. 
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